Aggregating Machine Learning and Rule Based Heuristics for Named Entity Recognition
نویسندگان
چکیده
This paper, submitted as an entry for the NERSSEAL-2008 shared task, describes a system build for Named Entity Recognition for South and South East Asian Languages. Our paper combines machine learning techniques with language specific heuristics to model the problem of NER for Indian languages. The system has been tested on five languages: Telugu, Hindi, Bengali, Urdu and Oriya. It uses CRF (Conditional Random Fields) based machine learning, followed by post processing which involves using some heuristics or rules. The system is specifically tuned for Hindi and Telugu, we also report the results for the other four languages.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملCorpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملDevelopment of Amazighe Named Entity Recognition System Using Hybrid Method
The Named Entity Recognition (NER) is very important task revolving around many natural language processing applications. However, most Named Entity Recognition (NER) systems have been developed using either of two approaches: a rule-based or Machine Learning (ML) based approach, with their effectiveness and weaknesses. In this paper, the problem of Amazighe NER is tackled through using the two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008